
��������	�
���	�����
� �� ������������
�������	�������
�	�� �� �	�

Yury Kolomensky
UC Berkeley



YGK, MECO Simulation Review01/12/2005 2

��������� ���� �	��
��	���	����	�

• Much progress made on MECO simulations thus far
� Two simulations packages, based on Geant3 and Geant4
� Beamline simulations, backgrounds, detector resolutions and 

efficiency
� Reconstruction code 

� L-Tracker Pattern recognition, fitting integrated into GMC
� Standalone T-Tracker PatRec and Fitter 
� Calorimeter response

• Covered in the previous talks
• A handful of developers, somewhat disjoint package 
structure



YGK, MECO Simulation Review01/12/2005 3

� ���� ����� ����

• Key questions for the experiment
� Magnet design and impact on physics capabilities

� E.g. field uniformity

� Longitudinal vs Transverse Tracker design
� Trigger and DAQ development

� Calorimeter reconstruction, tracking

• These will require increasingly more sophisticated 
software capabilities
� Detailed simulations
� Integrated reconstruction algorithms
� Standard benchmarks 

� Signal and backgrounds
� Geometry
� Fields



YGK, MECO Simulation Review01/12/2005 4


���	������ �� ��������� ��� ���

• As the sophistication of the software increase, and more 
people get involved in the project, overall design issues 
become important
� Integration of simulation and reconstruction/analysis

� Flexibility (various detector packages, physics signatures,   
backgrounds)

� Code maintenance and portability

� Documentation

• Ultimately, would like a system that can be migrated to 
online and offline operation w/o major redesign



YGK, MECO Simulation Review01/12/2005 5

� ����	�� �� �	�

• A fairly flexible online/offline system was designed by 
CDF/BaBar
� Based on C++ and tcl scripting language 
� Modular structure to accommodate different inputs, outputs, 

execution sequence
� Extensive and extendable set of build tools for various 

architectures (Linux & Solaris, historically supported OSF and 
HP-UX)

• In various flavors exists in major HEP experiments
� BaBar, CDF

• I have a lot of experience with the internals of this 
Framework, having ported it at least twice (E158, ILC 
nanoBPM project)

� No wheels invented here



YGK, MECO Simulation Review01/12/2005 6

� ����	�� �� �	�!�"���������	��

• Execution is organized in modules: chunks of code which perform 
specific tasks
�Abstract interface for each module: beginJob(), endJob(), beginRun(), 

endRun(), event()
�Each module is independent of each other (code dependence management: 

code in parallel) but modules pass data to each other
�Execution sequence (which modules are run and in what order) can be 

changed at run time with tcl scripts
� Online, simulation, offline is handled that way

�Event structure is extensible
� Type-safe interfaces to add/get data to/from event; only modules that directly use 
particular data objects need to know about them

�Extensible Run-dependent environment
� Handle “constants”  that change slowly in a type-safe manner

�Tcl run-time interface
�Change parameters of modules, add/remove modules, change inputs/outputs, etc.



YGK, MECO Simulation Review01/12/2005 7

� ����	�� �� �	�

EventEvent

Environment

G3
Input

G4
Sequence

…



YGK, MECO Simulation Review01/12/2005 8

#����$ ����� ���

• Code organized in packages 
�Each package is responsible for specific task (e.g. calorimeter 

digitization, PatRec, etc.)

�Corresponds to a linkable library

�Assigned to a responsible person

• By default, code base is in CVS 
�Accessed either by AFS or ssh

�Revision system: allow parallel development, version control

�Handles merges, creation/deletion of new files and packages, 
fallback mechanism



YGK, MECO Simulation Review01/12/2005 9

#����$ ����� ����%����&

• Regular software releases 
�Snapshots of software, taken periodically

� Every few months 
� Copies of releases can be either installed locally, or accessed (AFS) 
from the central location
� Each user downloads a small snapshot of the release, checking out 
only packages they need to recompile

• Build tools: SoftRelTools (SRT) from BaBar
�Several OS/compiler architectures

� Solaris, RedHat/SL Linux fully functional

� Language support for Fortran, C, C++, Java, ROOT shared 
libraries

�Again, no need to reinvent the wheel



YGK, MECO Simulation Review01/12/2005 10

' ��	��( ��' ��� ��	��)

• I’m starting on porting the MECO simulation into The 
Framework
� Inputs: GMC and G4 simulations up to hit creation

� GMC inputs through disk files, G4 through either disk files or 
Framework input modules
� Backgrounds through disk files

� Digitization: from hits to digital signatures (digis)
� Reconstruction

� Fortran-based PatRec and C++-based TTracker PatRec

� Outputs: ROOT/HBOOK
� Other simulation and reconstruction packages to be 

incorporated (e.g. calorimeter, trigger)



YGK, MECO Simulation Review01/12/2005 11

$ ����� �	

•Most of the hard work is actually in subsystems

•Software infrastructure: ~1 FTE
�Code port/maintenance, optimization, release 
building, QC/QA
� ~1 FTE at the start of the project, tail off when operational

�The rest in subsystem code
� Estimate ~1 FTE for simulations/reconstruction for each 
major subsystem (L-tracker, T-tracker, Calorimeter and 
Trigger, CR shield, magnet), mostly committed

� Plenty of opportunity for new blood


